Energy Efficient Lighting Programs

Key elements to maintaining quality, accessibility and competition

Steve Coyne Light Naturally

The Transformation of Lighting

 Greatest advance in the source of lighting since the incandescent lamp

The Light Emitting Diode: LED

Hugely Disruptive Technology

- Highly responsive, (colour and light output)
- Excellent opportunity for optical control
- Comparatively very long life
- Introduces new industry sectors to the lighting industry
 - Potentially without understanding or experience of lighting concepts

Unmatched Energy Savings

- Moving towards an energy efficiency gain of almost 10:1. That is a 90% energy saving!
- Particularly significant for governments in terms of energy security and economic development of emerging economies.

Shift Required in Consumer Thinking

- Light sources becoming assets rather than consumables
- Product pricing reflects this concept
- Need to shift mind set
 - No longer are lamps cheap, and purchased without thought
 - Consider longer term investment and return

Quick Look at Economics

Compare:

	Incandescent	LED
Power	60 W	9 W
Lifetime	1,000 h	15,000 h
Price	0.50 USD	10 USD

- Average 3 hours operating per day
- Electricity cost 0.20 USD per kWh
- 20 year analysis

Finance Make Sense

- Obvious
- But it's the initial outlay monetary benefits per lamp that is a
 - disincentive or barrier

Key consumer concerns

Like-for-like replacement in light output

Energy reduction achieved

Lamp life achieved

Performance of lamps (light output and energy consumption)

Lumen Depreciation (lifetime)

Average lumen maintenance for each of the 15 LED lamp models tested for CALiPER (US DOE Dec 2014)

Light Naturally for generations to come

Government regulation

- To deal with market failure or impediments to transformation of the market
- Protect the consumer who also struggles with:
 - Transition from lost-cost consumable to investing in an asset
 - Build confidence in new technology (awareness/education programs)
- Regulation also requires a compliance program of Monitoring, Verification and Enforcement

Supplier Motivation for Compliance

Market participants will be motivated to comply when non-compliance brings

Cost Benefit Potential consequences (financial and/or reputational) are greater than the benefits to be gained

Low

Risk of Capture

 Chance of capture for noncompliance is relatively high

High

Enforcement Response

Action is prompt

Imminent

Full Monitoring Cycle

International Accreditation System

Authenticity of Test Reports

- Confirm accreditation status
- If in doubt contact AB
- Check scope of lab

Authenticity of Test Reports

APPLICATION NOTE

CLD-AP57 REV

Cree® XLamp® LED IES LM-80-2008 Testing Results

Revision: 3 (November 22, 2011)

INTRODUCTION

This document provides the results of Cree's IES LM-80-2008 ("LM-80") testing on XLamp LEDs. Cree is providing this data so that the public can verify the reliability of Cree LEDs as part of a complete LED lighting system.

Note that this document only provides the end results of the LM-80 tests. This is not a complete LM-80 report. Do not use this document to submit luminaires or lamps to an agency. Cree customers who need the full LM-80 reports should contact their Cree sales representative.

Cree's customers who wish to share LM-80 results with their customers have permission to link to this docu-

TABLE OF CONTENTS

NVLAP Accrediation for LM-80-2008 Testing 2
XLamp MC-E White LEDs (Rev 1)3
XLamp ML-B White LEDs (Rev 0)4
XLamp ML-E White LEDs (Rev 0)5
XLamp MP-L EasyWhite LEDs (Rev 0)6
XLamp MT-G EasyWhite LEDs (Rev 0)7
XLamp MX-3 White LEDs (Rev 0)8
XLamp MX-6 White LEDs (Rev 2)9
XLamp XM-L EasyWhite LEDs (Rev 0)10
XLamp XM-L White LEDs (Rev 0)11
XLamp XP-E White LEDs (Rev 3)12
XLamp XP-E High Efficiency White LEDs (Rev 2) 13
XLamp XP-G White LEDs (Rev 4)14
XLamp XR-F White LEDs (Rev. 1)

Market Transformation Monitoring

 Data critical to monitoring and evaluation of regulatory programs

- World Customs Codes Harmonised System
 - □ HS Nomenclature 2017 Edition
 - **85.39**
 - Electric filament or discharge lamps, including sealed beam lamp units and ultra-violet or infra-red lamps; arclamps; light-emitting diode (LED) lamps.
 - 8539.50 Light-emitting diode (LED) lamps

